Скорость распространения волн и ее связь с длиной волны и периодом (частотой) колебаний

Вспомним, что при распространении колебаний в среде происходит перемещение фазы. Скорость распространения колебаний в упругой среде называют фазовой скоростью волны. Так как фазовая скорость v в изотропной среде постоянна, то ее можно найти, разделив перемещение фазы волны на время, за которое оно произошло. Поскольку за время Т фаза волны перемещается на расстояние λ, то:

v = λ/Т. (24.22)

Так как Т= 1/v, имеем

v = λv. (24.23)

Установлено, что фазовая скорость определяется только физическими свойствами среды и ее состоянием. Поэтому механические волны с разной частотой колебаний в заданной среде распространяются с одинаковой скоростью (заметим, что это верно только при не очень большом различии в частоте колебаний).

Таким образом, определенной частоте колебаний v в заданной среде соответствует единственное значение длины волны λ. При этом, как видно из формулы (24.23), большей частоте соответствуют более короткие волны в среде. Это дает возможность характеризовать волны в среде не частотой (периодом) колебаний частиц в них, а длиной волны λ. Здесь нужно помнить, что при переходе волны из одной среды в другую частота v и период колебаний Т частиц в ней остаются постоянными, а длина волны λ изменяется пропорционально изменению скорости v. Итак, характеризовать волны их длиной можно только тогда, когда все сравниваемые волны распространяются в одной и той же среде.