Reklama

Процеси і потоки

У сучасній операційній системі одночасно виконуються код ядра (що належить  до його різних підсистем) і код програм користувача. При цьому відбуваються різні дії: одні програми і підсистеми виконують інструкції процесора, інші зайняті введенням-виведенням, ще деякі очікують на запити від користувача або інших застосувань. Для спрощення керування цими діями в системі доцільно виділити набір елементарних активних елементів і визначити інтерфейс взаємодії ОС із цими елементами. Коли активний елемент системи зв’язати із програмою, що виконується, ми прийдемо до поняття процесу. Дамо попереднє означення процесу. Під процесом розуміють абстракцію ОС, яка об’єднує все необхідне для виконання однієї програми в певний момент часу.

Програма — це деяка послідовність машинних команд, що зберігається на диску, в разі необхідності завантажується у пам’ять і виконується. Можна сказати, що під час виконання програму представляє процес. Однозначна відповідність між програмою і процесом встановлюється тільки  конкретний момент часу: один процес у різний час може виконувати код декількох програм, код однієї програми можуть виконувати декілька процесів одночасно. Для успішного виконання програми потрібні певні ресурси. До них належать:

• ресурси, необхідні для послідовного виконання програмного коду (передусім процесорний час);

• ресурси, що дають можливість зберігати інформацію, яка забезпечує виконання програмного коду (регістри процесора, оперативна пам’ять тощо).

Ці групи ресурсів визначають дві складові частини процесу:

• послідовність виконуваних команд процесора;

• набір адрес пам’яті (адресний простір), у якому розташовані ці команди і дані для них.

Виділення цих частин виправдане ще й тим, що в рамках одного адресного простору може бути кілька паралельно виконуваних послідовностей команд, що спільно використовують одні й ті ж самі дані. Необхідність розмежування послідовності команд і адресного простору підводить до поняття потоку. Потоком (потік керування, нитка, thread) називають набір послідовно виконуваних команд процесора, які використовують загальний адресний простір процесу. Оскільки в системі може одночасно бути багато потоків, завданням ОС є організація перемикання процесора між ними і планування їхнього виконання. У багатопроцесорних системах код окремих потоків може виконуватися на окремих процесорах. Тепер можна дати ще одне означення процесу. Процесом називають сукупність одного або декількох потоків і захищеного адресного простору, у якому ці потоки виконуються.

Захищеність адресного простору процесу є його найважливішою характеристикою. Код і дані процесу не можуть бути прямо прочитані або перезаписані іншим процесом; у такий спосіб захищаються від багатьох програмних помилок і спроб несанкціонованого доступу. Природно, що неприпустимим є тільки прямий доступ (наприклад, запис у пам’ять за допомогою простої інструкції перенесення даних); обмін даними між процесами принципово можливий, але для цього мають бути використані спеціальні засоби, які називають засобами між процесорної взаємодії. Такі засоби складніші за прямий доступ і працюють повільніше, але при цьому забезпечують захист від випадкових помилок у разі доступу до даних. На відміну від процесів потоки розпоряджаються загальною пам’яттю. Дані потоку не захищені від доступу до них інших потоків за умови, що всі вони виконуються в адресному просторі одного процесу. Це надає додаткові можливості для розробки застосувань, але ускладнює програмування. Захищений адресний простір процесу задає абстракцію виконання коду на окремій машині, а потік забезпечує абстракцію послідовного виконання команд на одному виділеному процесорі.

Адресний простір процесу не завжди відповідає адресам оперативної пам’яті. Наприклад, у нього можуть відображатися файли або регістри контролерів введення-виведення, тому запис за певною адресою в цьому просторі призведе до запису у файл або до виконання операції введення-виведення. Таку технологію називають відображенням у пам’ять (memory mapping).

Моделі процесів і потоків

Максимально можлива кількість процесів (захищених адресних просторів) і потоків, які в них виконуються, може варіюватися в різних системах. В однозадачних системах є тільки один адресний простір, у якому в кожен момент часу може виконуватися один потік.

• У деяких вбудованих системах теж є один адресний простір (один процес), але в ньому дозволене виконання багатьох потоків. У цьому разі можна організовувати паралельні обчислення, але захист даних застосувань не реалізовано.

• У системах, подібних до традиційних версій UNIX, допускається наявність багатьох процесів, але в рамках адресного простору процесу виконується тільки один потік. Це традиційна однопотокова модель процесів. Поняття потоку в даній моделі не застосовують, а використовують терміни «перемикання між процесами», «планування виконання процесів», «послідовність команд процесу» тощо (тут під процесом розуміють його єдиний потік).

У більшості сучасних ОС (таких, як лінія Windows ХР, сучасні версії UNIX) може бути багато процесів, а в адресному просторі кожного процесу — багато потоків. Ці системи підтримують багатопотоковість або реалізують модель потоків. Процес у такій системі називають багатопотоковим процесом. Надалі для позначення послідовності виконуваних команд вживатимемо термін «потік», за винятком ситуацій, коли обговорюватиметься реалізація моделі процесів.

Складові елементи процесів і потоків

До елементів процесу належать:

· захищений адресний простір;

·  дані, спільні для всього процесу (ці дані можуть спільно використовувати всі його потоки);

· інформація про використання ресурсів (відкриті файли, мережні з’єднання тощо);

·  інформація про потоки процесу.

Потік містить такі елементи:

· стан процесора (набір поточних даних із його регістрів), зокрема лічильник поточної інструкції процесора;

· стек потоку (ділянка пам’яті, де перебувають локальні змінні потоку й адреси повернення функцій, що викликані у його коді).

Способи реалізації моделі потоків

Перш ніж розглянути основні підходи до реалізації моделі потоків, дамо означення важливих понять потоку користувача і потоку ядра. Потік користувача — це послідовність виконання команд в адресному просторі процесу. Ядро ОС не має інформації про такі потоки, вся робота з ними виконується в режимі користувача. Засоби підтримки потоків користувача надають спеціальні системні бібліотеки; вони доступні для прикладних програмістів у вигляді бібліотечних функцій. Бібліотеки підтримки потоків у наш час звичайно реалізують набір функцій, визначений стандартом POSIX (відповідний розділ стандарту називають POSIX. lb); тут прийнято говорити про підтримку потоків POSIX.

Потік ядра — це послідовність виконання команд в адресному просторі ядра. Потоками ядра управляє ОС, перемикання ними можливе тільки у привілейованому режимі. Є потоки ядра, які відповідають потокам користувача, і потоки, що не мають такої відповідності. Співвідношення між двома видами потоків визначає реалізацію моделі потоків. Є кілька варіантів такої реалізації (схем багатопотоковості); розглянемо найважливіші з них (рис. 3 .1).

 

Схема багатопотоковості М:1 (є найранішою) реалізує багатопотоковість винятково в режимі користувача. При цьому кожен процес може містити багато потоків користувача, однак про наявність цих потоків ОС не відомо, вона працює тільки із процесами. За планування потоків і перемикання контексту відповідає бібліотека підтримки потоків. Схема вирізняється ефективністю керування потоками (для цього немає потреби переходити в режим ядра) і не потребує для реалізації зміни ядра ОС. Проте нині її практично не використовують через два суттєвих недоліки, що не відповідають ідеології багатопотоковості.

Схема М:1 не дає змоги скористатися багатопроцесорними архітектурами, оскільки визначити, який саме код виконуватиметься на кожному із процесорів, може тільки ядро ОС. У результаті всі потоки одного процесу завжди виконуватимуться на одному процесорі.

• Оскільки системні виклики обробляються на рівні ядра ОС, блокувальний системний виклик (наприклад, виклик, який очікує введення даних користувачем) зупинятиме всі потоки процесу, а не лише той, що зробив цей виклик. Схема багатопотоковості 1:1 ставить у відповідність кожному потоку користувача один потік ядра. У цьому разі планування і перемикання контексту зачіпають лише потоки ядра, у режимі користувача ці функції не реалізовані. Оскільки ядро ОС має інформацію про потоки, ця схема вільна від недоліків попередньої (різні потоки можуть виконуватися на різних процесорах, а при зупиненні одного потоку інші продовжують роботу). Вона проста і надійна в реалізації і сьогодні є найпоширенішою. Хоча схема передбачає, що під час керування потоками треба постійно перемикатися між режимами процесора, на практиці втрата продуктивності внаслідок цього виявляється незначною.

Схема багатопотоковості M:N. У цій схемі присутні як потоки ядра, так і потоки користувача, які відображаються на потоки ядра так, що один потік ядра може відповідати декільком потокам користувача. Число потоків ядра може бути змінене програмістом для досягнення максимальної продуктивності. Розподіл потоків користувача по потоках ядра виконується в режимі користувача, планування потоків ядра — у режимі ядра. Схема є складною в реалізації і сьогодні здає свої позиції схемі 1:1.

 

 

Reklama